Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mem. Inst. Oswaldo Cruz ; 117: e200479, 2022. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1375914

ABSTRACT

The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines' dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.

2.
Mem. Inst. Oswaldo Cruz ; 117: e210130, 2022. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1386360

ABSTRACT

Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives' aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.

3.
Mem. Inst. Oswaldo Cruz ; 115: e200203, 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1135248

ABSTRACT

BACKGROUND Deforestation, driven by anthropogenic change in land use, influences the behaviour and abundance of vector-borne diseases. For various species of Chagas disease vectors, there is evidence that change in land use affects population density and abundance. Triatoma dimidiata is the most important Chagas vector in Guatemala, and at least one million people live in T. dimidiata endemic areas; however, infestation dynamics vary among regions, from high infestation with all life stages to low seasonal infestation by sylvatic adults. OBJECTIVES The aim of this study was to evaluate how land-use, combined with domiciliary risk factors, influences the infestation dynamics of T. dimidiata for four villages in a dry forest region with a strong deforestation history. METHODS Land use, measured with drone and satellite images, was classified into four categories (houses, monocultures and pastures, woodland and shrubland, and bare soil). Domiciliary risk factors and infestation were assessed through entomological surveys. Statistical analyses compared infestation indices and the ability of land use and domiciliary risk factors to explain infestation. FINDINGS Two villages had significantly higher infestation (26 and 30% vs. 5 and 6%), yet all villages had high colonisation (71-100% of infested houses had immature insects), with no significant difference among them. Because of the high level of deforestation across the study area, land use was not related to infestation; however, domiciliary risk factors were. A model based on four weighted domiciliary risk factors (adobe or bajareque walls, intradomicile animals, intradomicile clutter, and dirt floors) explains the infestation risk. MAIN CONCLUSIONS Because almost all infested houses have reproducing populations in this deforested dry forest region and statistical analysis identified the domiciliary risk factors for infestation, intermediate and long-term control of Chagas disease vectors in this region requires management of these risk factors.


Subject(s)
Humans , Animals , Adult , Triatoma , Chagas Disease/transmission , Insect Vectors , Forests , Guatemala , Housing
4.
Rev. Soc. Bras. Med. Trop ; 49(6): 721-727, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829672

ABSTRACT

Abstract INTRODUCTION: Geographical, epidemiological, and environmental differences associated with therapeutic response to Chagas etiological treatment have been previously discussed. This study describes high seroconversion rates 72 months after benznidazole treatment in patients under 16 years from a project implemented by Doctors without Borders in Guatemala. METHODS: An enzyme-linked immunosorbent assay was used to detect Trypanosoma cruzi IgG antibodies in capillary blood samples from patients 72 months after treatment. Fisher's exact test was used to establish association between characteristics, such as sex, age, and origin of patients, and final seroconversion. Kappa index determined concordance between laboratory tests. The level of significance was set to 5%. RESULTS: Ninety-eight patients, aged 6 months to 16 years, were available for follow-up. Sex and origin were not associated with seroconversion. Individuals older than 13 were more prone to maintain a positive result 72 months after treatment, although results were not highly significant. Laboratory tests presented elevated Kappa concordance (95% CI) = 0.8290 (0.4955-1), as well as high (97%) seroconversion rates. CONCLUSIONS: The high seroconversion rate found in this study emphasizes the importance of access to diagnosis, treatment, and follow-up of individuals affected by Chagas disease. Moreover, it contradicts the idea that it is not possible to achieve a cure with the currently available drugs. This study strongly supports expanding programs for patients infected with T. cruzi in endemic and non-endemic countries.


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/immunology , Antibodies, Protozoan/blood , Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Enzyme-Linked Immunosorbent Assay , Chronic Disease , Treatment Outcome , Chagas Disease/immunology , Seroconversion , Guatemala
5.
Mem. Inst. Oswaldo Cruz ; 108(4): 395-398, jun. 2013. tab, graf
Article in English | LILACS | ID: lil-678294

ABSTRACT

Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2) is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR) product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP) approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.


Subject(s)
Animals , DNA, Ribosomal Spacer/analysis , Insect Vectors/genetics , RNA, Ribosomal/analysis , Triatoma/genetics , Chagas Disease/transmission , Guatemala , Gene Amplification/genetics , Haplotypes , Insect Vectors/classification , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Triatoma/classification
6.
Mem. Inst. Oswaldo Cruz ; 107(7): 877-887, Nov. 2012. ilus, graf, mapas, tab
Article in English | LILACS | ID: lil-656043

ABSTRACT

In Guatemala, the Ministry of Health (MoH) began a vector control project with Japanese cooperation in 2000 to reduce the risk of Chagas disease infection. Rhodnius prolixus is one of the principal vectors and is targeted for elimination. The control method consisted of extensive residual insecticide spraying campaigns, followed by community-based surveillance with selective respraying. Interventions in nine endemic departments identified 317 villages with R. prolixus of 4,417 villages surveyed. Two cycles of residual insecticide spraying covered over 98% of the houses in the identified villages. Fourteen villages reinfestated were all resprayed. Between 2000-2003 and 2008, the number of infested villages decreased from 317 to two and the house infestation rate reduced from 0.86% to 0.0036%. Seroprevalence rates in 2004-2005, when compared with an earlier study in 1998, showed a significant decline from 5.3% to 1.3% among schoolchildren in endemic areas. The total operational cost was US$ 921,815, where the cost ratio between preparatory, attack and surveillance phases was approximately 2:12:1. In 2008, Guatemala was certified for interruption of Chagas disease transmission by R. prolixus. What facilitated the process was existing knowledge in vector control and notable commitment by the MoH, as well as political, managerial and technical support by external stakeholders.


Subject(s)
Animals , Child , Child, Preschool , Humans , Chagas Disease/prevention & control , Endemic Diseases/prevention & control , Insect Vectors , Insecticides , Insect Control/methods , Rhodnius , Chagas Disease/epidemiology , Guatemala/epidemiology , Housing , Prevalence , Program Evaluation , Seroepidemiologic Studies
7.
Cad. saúde pública ; 25(supl.1): S168-S178, 2009. graf, tab
Article in English | LILACS | ID: lil-507317

ABSTRACT

The deterioration or absence of plaster walls in houses and poor hygienic conditions are the most important risk factors for indoor Triatoma dimidiata infestation in Guatemala. A cross-disciplinary study was conducted addressing T. dimidiata infestation, household hygiene, and housing construction. The study focused on local materials and cultural aspects (including gender roles) that could lead to long-term improvements in wall construction. A new plaster mix for walls was developed on the basis of laboratory studies on construction materials recommended by local villagers. Four villages with persistent (post-spraying) T. dimidiata infestation were studied. In two villages, an ecosystem approach was implemented, and the homeowners conducted wall improvements and household sanitation with the support of the interdisciplinary team (the ecosystem intervention). In the other two villages, a vector control approach based on insecticide spraying was adopted (traditional intervention). Both interventions were associated with a reduction in T. dimidiata infestation, but only the ecosystem approach produced important housing improvements (sanitation and wall construction) capable of preventing T. dimidiata re-infestation in the long term.


A degradação ou ausência de reboco nas paredes e as condições higiênicas deficientes são os fatores de risco mais importantes para a infestação intradomiciliar por Triatoma dimidiata na Guatemala. Realizamos um estudo transdisciplinar sobre infestação por T. dimidiata, higiene intradomiciliar e condições de construção. O estudo destacou as questões de materiais locais e aspectos culturais (inclusive papéis de gênero) que poderiam levar a melhorias nas condições das paredes no longo prazo. Formulou-se uma nova mistura de gesso para paredes, após estudos de laboratório sobre materiais de construção com base em recomendações dos residentes locais. Foram estudados quatro vilarejos com infestação por T. dimidiata que havia persistido mesmo após aplicação de inseticida. Em duas comunidades, foi implementada uma abordagem ecossistêmica, e os residentes implementaram melhorias nas paredes e no saneamento domiciliar, com o apoio da equipe interdisciplinar (intervenção ecossistêmica). Nas duas outras comunidades, adotou-se uma estratégia de controle com base na aplicação de inseticida (intervenção tradicional). Ambas as intervenções levaram a uma redução na infestação por T. dimidiata, mas apenas a abordagem ecossistêmica produziu melhorias importantes nas condições de moradia (saneamento e revestimento das paredes) capazes de prevenir a re-infestação por T. dimidiata no longo prazo.


Subject(s)
Animals , Humans , Community Participation , Chagas Disease/prevention & control , Housing/standards , Insect Control/methods , Insect Vectors/growth & development , Triatoma/growth & development , Chagas Disease/transmission , Guatemala , Population Surveillance , Sanitation/methods
8.
Cad. saúde pública ; 25(supl.1): S83-S92, 2009. tab
Article in English | LILACS | ID: lil-507321

ABSTRACT

Seventeen variables were evaluated as possible risk factors for the intradomiciliary infestation with Triatoma dimidiata in 644 houses in Jutiapa, Guatemala. During 2004 the houses were assessed for vector presence and evaluated for hygiene, cluttering, material comfort, construction conditions and number of inhabitants, among other factors. Chi-square analysis detected significant associations between vector presence and eight variables related to domestic sanitary and construction conditions. Log-linear models showed that regardless of the age of the house, the odds of vector presence were 4.3 and 10 times lower in houses with a good socioeconomic status compared with poor and very poor houses respectively. Log-linear models also pointed to a greater chance of vector presence when walls lacked plastering (3.85 times) or walls had low quality-incomplete plastering (4.56 times), compared with walls that were completely plastered. Control strategies against T. dimidiata should include the introduction of better-quality but inexpensive plastering formulations and better sanitation practices should also be promoted among the population. Such control strategies should not only reduce or eliminate infestation, but also prevent vector reinfestation.


Seiscientas cuarenta y cuatro casas en Jutiapa, Guatemala fueron encuestadas en el año 2004 para buscar el vector de la enfermedad de Chagas Triatoma dimidiata. Diecisiete variables relacionadas con las condiciones estructurales y de higiene de las casas fueron registradas y evaluadas como factores de riesgo para la infestación intradomiciliar con T. dimidiata. Análisis chi-cuadrado detectaron asociaciones significativas entre la presencia del vector y 8 de estas variables. En modelos log-lineares se detectó, que sin importar la antigüedad de la casa, las posibilidades de presencia del vector fueron 4,3 y 10 veces más bajas en casas con un buen estado socioeconómico que en casas pobres o muy pobres, respectivamente. Además, las posibilidades de infestación fueron mayores en casas con paredes sin repello (3,85 veces) o con repellado incompleto o de mala calidad (4,56 veces), que con repellado completo. Las estrategias para el control de T. dimidiata deberían incluir la introducción de repellos baratos y de buena calidad y la promoción de mejores prácticas sanitarias. Estas estrategias no solo reducirían o eliminaría la infestación, sino también ayudaría a prevenir la reinfestación.


Subject(s)
Animals , Humans , Chagas Disease/epidemiology , Housing/statistics & numerical data , Insect Vectors/growth & development , Triatoma/growth & development , Chagas Disease/transmission , Guatemala/epidemiology , Insect Control , Poverty , Risk Factors , Sanitation , Species Specificity
9.
Mem. Inst. Oswaldo Cruz ; 102(2): 221-223, Mar. 2007. graf
Article in English | LILACS | ID: lil-447545

ABSTRACT

Triatoma dimidiata is an important vector of Chagas disease in Guatemala. To help understand the biology and population dynamics of the insect, we estimated the number of full sibling families living in one house. Forty one families with an average size of 2.17 individuals were detected using random amplification of polymorphic DNA-polymerase chain reaction genetic markers. This result suggests high levels of migration of the vector, polyandry, and a significant capability for spreading the disease.


Subject(s)
Humans , Animals , Housing , Insect Vectors/classification , Triatoma/classification , Chagas Disease/transmission , Genetic Variation , Guatemala , Gene Frequency/genetics , Insect Vectors/genetics , Population Dynamics , Random Amplified Polymorphic DNA Technique , Triatoma/genetics
10.
Mem. Inst. Oswaldo Cruz ; 98(3): 305-310, Apr. 2003. tab
Article in English | LILACS | ID: lil-340106

ABSTRACT

A five-year domiciliary collection in the 22 departments of Guatemala showed that out of 4,128 triatomines collected, 1,675 were Triatoma dimidiata (Latreille, 1811), 2,344 were Rhodnius prolixus Stal 1859, and only 109 were T. nitida Usinger 1939. The Chagas disease parasite, Trypanosoma cruzi, was found in all three species. Their natural infection rates were similar in the first two species (20.6 percent; 19.1 percent) and slightly lower in T. nitida(13.8 percent). However there was no significant difference in the infection rates in the three species (p = 0.131). T. dimidiata males have higher infection rates than females (p = 0.030), whereas for R. prolixus there is no difference in infection rates between males and females (p = 0.114). The sex ratios for all three species were significantly skewed. More males than females were found inside houses for T. dimidiata (p < 0.0001) and T. nitida (p = 0.011); a different pattern was seen for R. prolixus (p = 0.037) where more females were found. Sex ratio is proposed as an index to show the mobility of T. dimidiata in different populations. T. dimidiata is widely distributed in the country, and is also the main vector in at least ten departments, but R. prolixus with higher vectorial capacity is an important vector in at least two departments


Subject(s)
Animals , Humans , Male , Female , Chagas Disease , Insect Vectors , Triatoma , Trypanosoma cruzi , Chagas Disease , Guatemala , Housing , Sex Factors , Sex Ratio , Trypanosoma
11.
Mem. Inst. Oswaldo Cruz ; 98(1): 37-43, Jan. 30, 2003. ilus, mapas, tab, graf
Article in English | LILACS | ID: lil-331380

ABSTRACT

Triatoma nitida was found in 14 (0.4 percent) out of 3,726 houses located in six departments across Guatemala, which were surveyed from 1994 to 1998 by the man-hour collection method. Compared to previous information, the distribution of T. nitida in Guatemala has increased from five to nine departments; the species is present in mild climates at altitudes from 960 to 1,500 m. Fourteen percent of the intradomestic T. nitida were infected with Trypanosoma cruzi. The species was often found in conjunction with other triatomines (T. dimidiata and Rhodnius prolixus). The domestic and peridomestic presence of T. nitida in Guatemala was rare, but occasionally this species was colonizing human-made constructions. T. nitida appears to have a low importance as Chagas disease vector in Guatemala, as indicated by its scarce presence in the domestic habitats and defecation patterns. However, it clearly has potential to become a Chagas vector so we recommend an on-going study of the intradomestic presence of T. nitida following the control programs in Guatemala. Morphometric analysis of 47 T. nitida males from three localities showed quantitative differences between the populations, which indicates that geographic distance is an important factor in the structuring of T. nitida populations


Subject(s)
Animals , Humans , Male , Insect Vectors , Triatoma , Trypanosoma cruzi , Chagas Disease , Guatemala , Housing , Insect Vectors , Population Dynamics , Triatoma
12.
In. Agencia de Cooperación Inteernacional del Japón (JICA). Enfermedades tropicales en Guatemala 93. Guatemala, s.n, 1993. p.110-5, ilus.
Monography in Spanish | LILACS | ID: lil-175751
13.
In. Agencia de Cooperación Inteernacional del Japón (JICA). Enfermedades tropicales en Guatemala 93. Guatemala, s.n, 1993. p.116-7.
Monography in Spanish | LILACS | ID: lil-175752
SELECTION OF CITATIONS
SEARCH DETAIL